
ITP
10,1

46

Supporting the social
processes of software

development
Steve Sawyer

Syracuse University, New York, USA, and
Joel Farber and Robert Spillers

IBM Corporation, Santa Theresa Laboratories, California

This paper addresses one instance of software developers attending to their
own work-related needs. Behind this paper lies our belief that one key to
improving software development is to make it easier for the developers to work
together. This perspective is shared by many (e.g. Boehm, 1981, 1987; DeMarco
and Lister, 1988; DeMarco, 1995) and our purpose in this paper is to describe
one site’s approach to developing a facility that allows team members to work
together. Specifically, we report on the use of a computer-supported meeting
facility that we call the “team room”. In presenting the team room and its use we
address four questions:

(1) What is the team room?
(2) How is the team room used?
(3) What makes it useful? and
(4) How is team room use affecting software development performance at

this site?
Computer-supported meeting facilities are common (see e.g. McGrath and
Hollingshead, 1994) and are being used to support software development
(Carmel, George and Nunamaker, 1992; Tyran, George and Nunamaker, 1993;
Liou and Chen, 1993-94). However, the development and use of the team room at
this site is different from these previously reported experiences for two reasons.
The first reason is that the team room we describe in this paper is a “home-
grown” system. That is, the facility grew out of the software developer’s own
efforts to help themselves to work together. The second reason relates to how
the team room is used to support software development. Compared with
existing electronically supported meeting rooms (EMS), the team room imposes
little structure on how the group works (Mcleod, 1992) and does not require
facilitator support (see Growohoski et al., 1988). In this way it does not serve the

Information Technology & People,
Vol. 10 No. 1, 1997, pp. 46-62.
© MCB University Press, 0959-3845

This work has been supported by IBM contract STL92135. The generous assistance of Harry
Campbell, Mike Pauser, Mike Dockter, Andrew Peterson, Kevin Seppi and Dave Tolleson have
made this paper possible.

Received November 1996
Revised December 1996

Social processes
of software

development

47

more stylized role of process support for which many EMS are designed
(DeSanctis and Gallupe, 1987).

Software development as production
Much of the present focus on improving software development seeks to make it
more of an engineering discipline by concentrating on improving the
production process (Humphrey, 1988 and 1995). Production aspects of software
development include methodologies, techniques and tools. Examples of these
include integrated tool suites in improved development environments (using
integrated CASE tools) and more powerful software languages (such as C++).
This thrust draws on more powerful techniques (like JAD), advanced process
control methods (such as SEI’s Capability Maturity Model or the IS0 9000 series
of standards) and more managerial skills (such as risk and project
management).

Despite these efforts, the software development process must improve
(Davis, 1996). Viewing software development as more than a production process
opens new ways to achieve these improvements. One view is to routinize
development as a series of scenarios and then to automate them. This leads to a
flexible, but standardized, software development process which is exemplified
by “workflow” models (Brown, 1995; Chroust and Bergsman, 1994). A second
thrust focuses on how the work is being done. This focus attempts explicitly to
account for the social and behavioral aspects of software development in the
production methods (Curtis, 1989). For example, a better understanding of how
development is enacted can come from an account of worker behavior (Sachs,
1995; Suchman, 1983 and 1995). In this paper we opt for this social-behavioral
approach. Our goal is to describe how software developers have used their own
work practices to guide the evolution of a facility that allows them to work
together more easily.

The paper continues in four parts. The first part lays out the motivating
forces behind the team room’s evolution at this site. The second part describes
how we conducted our study. The third part summarizes the findings from our
analysis of how the team room supports the process of developing software.
The fourth part of the paper discusses some implications, both anticipated and
unexpected, of team room use.

Issues with developing software
To understand the context underlying the team room’s emergence, this part
describes the issues facing the developers at one software development
laboratory. The site is one of several software development laboratories and
part of a multinational hardware and software development corporation. The
site’s products are mostly large systems software that can operate on multiple
platforms. Many products are industry standards and some have been in the
market for nearly three decades. More than 1,800 developers work at the site.
Nearly 89 per cent of the developers have college degrees, with 37 per cent of
these also having masters or doctorates. The employees average more than 15

ITP
10,1

48

years in software development, more than 11 years with the company and more
than seven years at this site.

Like other large systems developers, the site faces increasing competition.
Product time-to-market issues and quality are often competing pressures. The
market life of each software product being developed is also shortening. Even
so, long-term maintenance demands increase with each new release. So, by the
early 1990s the site’s product complexity grew quickly, while development
became more cumbersome. This combination led to difficulties in maintaining
existing products and slowed the pace of new product development. Defect
rates for some products rose above targeted levels and customer satisfaction
with some product lines declined. Concurrently, developers were increasingly
unhappy with the way their work was structured and with the pressures they
faced at work. They were working harder, spending more time at work and
seeing fewer results. Senior managers at the site also were under tremendous
pressure to create new products and extend revenue streams on existing lines.

These intertwined influences – market pressure, product pressure, work life
pressure and managerial pressure (including changes in senior management) –
led the site’s leadership to rethink its approach to developing software. In 1992
the site began a two-pronged approach to revamping software development.
The first prong was a focus on team-based development and a move away from
the functional/project matrix management structure. In doing this, the second
prong was to leverage available software tools and existing development
techniques to facilitate their work.

The team room arises
Facing the need to get software development specialists with strong and
divergent views to interact on complex problems, one team began dragging a
PC and an overhead projector into a conference room. At first this arrangement
was crude and temporary – a laptop or workstation wheeled in on a cart and an
LCD image projected onto a pull-down screen. While seemingly simple, this
meant that, instead of staring over the shoulder of one developer to look at her
screen in a small office, team members could see more easily the LCD image
projected on the wall. Work products (e.g. software modules, status reports and
documentation) were carried into the room on floppies and loaded onto the
machine as needed (the computer in the room was not networked). However,
LCD-screen resolution was poor and the lack of network access complicated
things. The room was also uncomfortable since the computer warmed the room
quickly and the reflected glare from the lights made the screen image even
hazier.

Despite these limitations, this crude screen-sharing made it easier for people
to work together on the same product, at the same time. Other teams began
experimenting by adding various tools and trying out other configurations.
Soon, the computer in the meeting room was connected to the local area
network so that files and software tools were more accessible. Bigger screens
with higher resolution were installed. One-by-one, rooms were remodeled to

Social processes
of software

development

49

accommodate a computer workstation and provide more comfortable working
conditions. For instance, improved air-conditioning systems, more ergonomic
seating, indirect lighting and sound-dampening material were installed. This
made it easier to work for several hours in a darkened room full of people with
a computer running.

Other teams took available technologies and adapted them for use in the
room. For instance, electronic white boards were installed. Facsimile machines
were added – and images (from the white board) could be transferred (by fax) to
the computer. Additional phone lines were added for conference calls. A video
camera was added so that the screen could be videotaped. Tapes provided a
record of the work and a record of the discussions and decision making. These
tapes also were expected to serve as training aids, to record decision processes
and to act as meeting minutes (so those not attending could “catch up”).

Developers began pushing management to help improve these rooms and to
get more of them. Since the rooms represented small investments (less than
$25,000), this was possible. The site’s in-house R&D group worked with the
development teams by getting better electronics (like better screens and
specialized lighting) and improving the room’s ergonomic design (with better
chairs and non-reflective surfaces). The R&D group worked also with
developers to identify and adapt several existing commercial software products
for use in the facility.

The team room
The present team room is a conference room redesigned to support intense
and/or extended team-based work sessions (see Figure 1). The single

Figure 1.
The team room: an

overhead view

ITP
10,1

50

workstation in the team room is connected to the organization’s local and
wide-area networks. This connection provides access to software tools and the
team’s work products during a team meeting. The room’s dominant feature is a
large screen at one end which is readable from any point in the room. While
there is only one keyboard, the screen image serves as a shared work space.
This makes the single workstation a shared system.

Software products accessible from the room’s computer include the tool suite
which is available at an individual’s workstation. However, the team room
environment has led to changes in the suite’s use. For example in the team room
commercially available tools designed for group work, but not used much at
individual workstations, are used extensively. A group editing tool allows
layered comments and viewing of comments – and for comments on these
comments (resembling what is reported in Olson et al., 1993). Another tool
allows two workstations (on the same network) to see the same screen and to
work jointly with what is on that screen. The R&D group also modified an
existing software tool for scheduling and tracking access to the team room.
This modified tool also allows the team room’s “owners” (the department that
paid for the renovation of the existing conference room) to set up open access
times around their schedule.

The first dedicated team room was available in early 1992. The site now has
22. Each has one computer workstation connected to the organization’s
network(s) and a large common screen. These team rooms also have supporting
audiovisual equipment such as video cameras, VCRs, facsimile machines,
electronic white boards and phones. The facility is ergonomically designed to
have sound-dampened walls, low reflective surfaces and special lighting (e.g.
lights that illuminate the table without creating screen glare).

The common display uses a high-quality projector. Since these projectors
produce heat and noise, typically a false wall is built to support the large
screen and the projector sits behind the false wall. The large table in each
room is constructed to allow the keyboard, mouse and screen to pass easily
between seats. However, the workstation typically sits at the end of the table
away from the common screen. The keyboard is shared among the room’s
occupants in one of two ways: rotating or dedicated scribing. With a rotating
scribe, people take turn typing as their expertise or skills are needed. With a
dedicated scribe, one person responds to requests and direction from the
group.

One key reason for the growth in the number of team rooms is the
perception among developers that the team room makes it easier for people to
work together. So, developers from a team using the team room would tell
their peers in other teams. Lured by the promises in these stories, team after
team clamored to use team rooms. This peer-to-peer propagation spread
through the development teams at the site. A developer from the R&D group
called this “… biologic; an infection. A guy from one team sees how useful it
can be and infects his team with the idea. Pretty soon they’ve caught the bug,
too”.

Social processes
of software

development

51

Studying the team room’s use
This part describes the research methods used to study the team room’s use.
Developers and managers wanted to assess how team room use enabled
software production. They sought direct observation of their work as it
occurred, quantifiable data on use and performance, and a synthesis of the
anecdotes and stories of team room users. To that end, beginning in 1993, we
spent 18 months studying the site’s software developers doing their work in
their native environment using (and not using) the team room. Over these 18
months we collected data on team room use and software design team
performance using a combination of methods.

With the support of the team members and their managers, we used semi-
structured interviews to gather data from the members and the managers of 45
software development teams. We formally interviewed 56 people. Many of these
people spoke with us again, often several times, over our observation period.
Interviewees included developers and managers, including senior managers.
This group included people who had never used the team room but required
outputs of team room-supported teams and many of the team room’s early
proponents and chief advocates. These people reflected a range of team room
use – from little or none to extensive. We met also informally, or in organized
response sessions, with another 153 developers and managers from the 45
teams following our survey data collection.

Team size ranged from four to 14 people, with no detectable relationship
between team size and room use. The teams in this sample reflect the range of
team room usage. Nearly one-third of the teams used it every day, with half the
sample using it at least weekly or more. The other half of the teams used the
team room no more than several times monthly, and two teams never used it
during the 18 months we collected data.

Survey-based data were gathered from 40 teams (and 128 respondents) at the
site. Five teams were not surveyed: three declined, and two were performing
software support rather than development. The surveys were developed from
existing scales and pilot-tested at the site (Dillman, 1978). We used these to
gather demographic data about the teams and team members, the features and
functions of the team room that team members used, and self-reported team-
level performance. Questions were posed at the team level as this is the level of
analysis. This is also the level of measurement and the level of theory (Klein et
al., 1994). The self-reported team room usage data was collected so as to allow
it to be compared with data collected from the organization’s archives on team
room use.

We collected data also about performance from stakeholders for each of these
teams. This was done using a structured survey in a phone-based interview
using the scale developed and used by Henderson and Lee (1992) in their study
of software developers. Stakeholders for these teams are people who, while not
on the team, depend on the team’s work (Lee et al., 1991; Seidler, 1974). These
might be user managers, senior development managers, and/or senior
customers.

ITP
10,1

52

For the interview and observational data, the transcripts and field notes were
content-analyzed to highlight themes and recurrent issues. We used these as the
basis for follow-on interviews. In the debriefing (offered to all 45 teams and
accepted by 28) we asked additional questions to reflect on the findings from
both the qualitative and quantitative data analysis.

Analysis
In this part the data analysis is presented. This analysis is done to address three
questions:

(1) How is the team room used?

(2) What makes it useful? and

(3) How is team room use affecting performance?

The developer survey provided data on demographics, team-member use of the
team room, and self-rated performance measures of the team’s effort. Archival
records provided data also on team room use over time and on product-defect
rates (a measure of performance). Additional performance data are based on
surveys of stakeholders. Interviews provided data on team room use and the
role it plays in developing software. Individual data are aggregated to the team
level for analysis (James, 1982).

To address how the team room is used, archival data on room use is plotted
over time. This is compared with the self-reports of team members responding
to questions on how long they have been using the room and how often they use
the facility. The multiple team member responses on duration of use agree in 90
per cent of cases with archival data. They agree 93 per cent of the time on
frequency.

To address the last two questions we draw on both survey and interview
data. The developer survey provides data on how, and how often, team room
functions are used. Data from the interviews are used to form an explanatory
effects matrix (Miles and Huberman, 1994; Miller, 1982). In constructing this
matrix to address what makes the team room so useful, the various reasons for
team room use, drawn from the interviews, form one axis. The various
outcomes or effects of team room use, also drawn from the interviews, form the
other axis. The matrix is completed by developing links between the two based
on the interviews. For example, from the field notes and interviews, we looked
for how the team rooms are used. As we organized these, categories or types of
use emerged. These types of use formed one axis and supporting statements
formed the other.

A matrix for how team room use affects performance is also developed. For
this matrix one axis is for reasons for usage and the other axis is for
performance effects ascribed to usage. Additional performance data are drawn
from archives (the aggregate product-defect rates) and from stakeholder
responses (regarding both product and team performance). The following
sections summarize the findings.

Social processes
of software

development

53

How is the team room used?
Our analysis reveals three findings regarding team room use. The first finding
is the extensive use of the team rooms. The second finding is that this use varies
widely as to both how much, and in what way, the team rooms are used. The
third finding is that using team rooms has become an accepted part of
developing software at the site.

Usage records show extensive team room use. The number of meetings, the
booking rate, and the utilization rate of the team rooms are presented in Figure
2. During the 18 months of observation the number of meetings held stayed
steady around 50 per month per team room. However, over this time, the
number of team rooms grew from 14 to 22. So, the total number of team room-
supported meetings grew from 14 rooms used about 50 times per month (700) to
22 rooms used about 52 times per month (1,144). Over this period the average
booking rate (the times when rooms are sought) averaged 130 per cent of
aggregate room capacity (defined as the period from 8 a.m. to 5 p.m. on
workdays). Peak periods, such as late winter, see booking rates at 160 per cent
of aggregate room capacity. This overbooking means requests for use exceed
aggregate room capacity.

Team room use, the degree to which the rooms are used, shows a trend over
the 18 months of about 75 per cent. Less-than-full use is due to both room
downtime (for maintenance or upgrades) and unusable blocks of time (e.g. only
30 minutes free between scheduled meetings). Thus, data on use is
conservatively measured since it does not reflect the unscheduled use of these
free times, a common occurrence.

We saw teams adjusting their work schedules to use the facility after normal
business hours: arranging to come in early or stay late to use a team room. For
instance, one project manager said his team would not start new development
work until they could get a team room. He felt the delay caused by waiting for
access was always recovered in the work done during the meeting. Said a senior

Figure 2.
Utilization and booking

rates for team room

ITP
10,1

54

manager: “Everyone has used the [team room] at some point”. While this is not
exactly true, it represents the common perception of the value placed on the
team room.

Types of team room-enabled meeting vary greatly. Since the facility is a
collection of simple technologies designed to support team work, use varies by
team and by task. The team room is used in the range of meetings typically
associated with software development, such as requirements and specification
definition, code writing and debugging, code review, project status and project
postmortems. For each type of meeting, team room use differs. Table I outlines
the way the facility is used and what software tools/features are most often
used. Respondents were asked which software tools/ features they used from a
set that included:

• the group editor;
• electronic white board;
• site-link software;
• presentation graphics;
• word processing;
• coding/debugging tools;
• project management tools;
• fax/voice connections;
• video-camera; and
• other (an open-ended response).

For example, in requirements and specification meetings, teams use the
whiteboards and computer-based drawing/presentation tools more than any
other features. These meetings are characterized by constant debate, high
levels of conflict and much interaction. For coding and debugging meetings, the
code is displayed on the main screen for all to work on together. This code can
be run on the screen and debugged in real time with the entire team (or those

Used for Use as %a Features used (as %)a

Scheduled meetings 81 Group editor (67) White board (90)
Ad hoc meetings 63 Group editor (40) White board (95)
Brainstorming 57 Group editor (15) White board (90)
Teamwork 24 Group editor (67) White board (90)
Remote site links 9 Group editor (10) Site link (100)
Privacy/solitude 6 n.a.
Other 18 Project (35) Presentation (15)

Management Graphics
aCan check multiple uses, only top two reported

Table I.
Room usage and feature
usage

Social processes
of software

development

55

who needed to be involved) sitting together. Instead of discussion in the meeting
and action between meetings, using the team room allowed developers to debug
together during the meeting. Said a team leader: “Now the experts talk and we
can listen. Used to be everyone had an opinion. Most of us talk less, lots more
gets done.” A senior technical lead said: “Using the [team room] means I can
lead people to the solution I know will work. They can argue, I can show. And
we get where I want to go”.

Code review meetings typically use the group editing tool. This allows
multiple comments to be made on the same document. Typically, comments are
made to the electronic copy by people working from their individual offices.
These are brought up and discussed in a meeting. Using the team room’s shared
screen allows this discussion to happen in the meeting. Instead of huge paper
dumps which demand extensive premeeting work, the team room allows people
to come in and run through the document during the meeting, making changes
and discussing points along the way. Said a senior developer: “We review it
there. It’s done when we leave, not like a meeting – it’s work getting done”.

The team room also enables effective use of project management software,
agenda sharing, access to work products during meetings and meeting notes’
distribution (which can be done electronically at a meeting’s end). One product
manager, faced with getting senior technical people from the performance,
quality and access departments together to work on fixing a sluggish and
buggy section of code, decided to use the team room to get these experts
together. She sent out an electronic copy of the agenda and moderated a small
“flame war.” Following this the experts came, she said: “prepared to talk about
issues, and demonstrate their points”. Several of the topics were cleared before
the meeting. In the meeting she had the agenda and code on the screen. They
ran code as they talked through issues, coming to a resolution in less than 24
hours from the initial e-mail.

Another software tool allows team rooms in geographically separate
locations to share the same work product on the screen. Thus, people in two
team rooms in the same building, or on separate continents, can work together
simultaneously on the same product. Using the phone as the audio link means
this work can be both visual and audio. For example, groups of lawyers from
two different sites used the group editor and common screen link software tool
to work together on a software licensing agreement without having to make the
transatlantic flight. This is different from video conferencing, since the two
groups worked on the same document(s) in real time; and separating phone
lines from the computer link provided a useful redundant connection when the
screen at one site froze.

Using the team room is an accepted part of working at the site. The facility is
now integrated with the site’s software development process. The team room
has become a part of the fabric of development – just like code reviews and
project status meetings. For example, facility maintenance, usage tracking and
scheduling tool support are now regular internal information systems support
group functions. In our follow-up interviews, developers wondered why we

ITP
10,1

56

were so interested in the team room: “Oh that,” said a developer, “it’s fine, we use
it … Why not? It helps.” That team room use is no longer topical supports it’s
acceptance, and embeddedness, in the site’s software development process. Said
the quality guru: “We [managers] don’t have to push, they [the teams] ask to use
it [the team room]”.

What makes the team room so useful?
The team room facility is based on simple technologies. There is no special
software; it demands no special training and does not require external
facilitation. Also, there is no mandate to use the team room. However, it is used
widely. Our interviews and observations suggest that the team room is used
because it provides a shared work space. And, this work space adapts to how
each team uses it. The team room becomes a team space. This team space
concept is highlighted in at least two ways. First, interviews and observations
suggest that the screen serves as a focal point for all people in the room. Second,
these interviews and observations show that work is done in the room during
the meeting.

When people use the team room, they focus on the screen and on the work
product on the screen. Since the work in the team room is projected on a shared
screen, it “belongs” to the team, and individual ownership is diffused. In this
way the shared screen acts as a social buffer. Two developers may be talking to
each other, but they do so staring at the screen. This means that when
disagreements arise there is no need to directly face the person who did the
work. Thus, in the team room it is easier to disagree with the work on the screen
and make changes to it without having to negotiate directly with the person
who wrote the code or document. For example, in observing team room use we
often saw people venting their anger toward the work on the screen and not
toward each other.

The team room enables social interaction by providing a buffer between
people. In team room meetings people face the screen. Instead of face-to-face,
work in the team room becomes face-to-screen-to-face. While conversation
flows, people rarely face each other. These team room meetings look much like
watching a movie, save that the audience is actively engaged in making the
movie as they watch – a truly interactive show. In our interviews, this appears
in subtle ways. People speak of being more comfortable to talk about problems
with the product on the shared screen. Says a developer: “...people can say what
they need to say. Stuff gets done there. Not just talking”.

Work gets done in the team room. An original intention of the team room had
been to reduce meeting time – a production-focused efficiency issue. Instead,
developers report that per-project meeting time has remained constant. People
find they can access work material and get work done in team room meetings.
This is contrast with most typical meetings, where the majority of work is done
between meetings. In the team room developers can try out ideas by running
the code while working in concert as a team. Often, disagreements on how to
make changes in code get resolved by running the variants for all to watch.

Social processes
of software

development

57

Large paper dumps (common in code review and documentation review
meetings) are no longer needed; the document is brought up on the screen and
editing is done as a group. “I don’t hate the team room like I hate meetings,” said
one junior developer.

How is the team room affecting software development performance?
At this site, two outcome measures important to the software developers are
product quality (the number of defects reported) and developer work
satisfaction. These are also the major criteria for assessing improvements in
software development performance. From 1992 through 1994, the number of
defects in the software products at this site fell by 50 per cent. This is not
directly attributable to the team room, for two reasons. The first reason is that
team-building and process-quality initiatives were coexistent efforts. The
second reason is that we cannot relate reported defects to specific project teams
since many teams work together to build integrated products. However, the
team room provides the vehicle for these efforts; serving as the workplace for
the developers whose products posted such large quality improvements.

Analysis of the survey-based data shows relationships between team room
use and higher levels of developer satisfaction and improved product quality.
For teams which used the team room extensively (more than once-weekly),
developers reported above-average improvements in work satisfaction and
product quality compared with those teams which used the team room less.
From the survey data, the mean for the 40 teams is 5.23 on a seven-point scale,
with “7” scaled as most satisfied. The mean for the 20 teams using the team
room most is 6.01. Stakeholders report higher levels of product quality for
teams using the team room most. The zero-order correlation between
stakeholder-rated product quality and greater-than weekly use of the team
room is 0.4962 with a p of 0.031 for the 20 high-use teams. Since these
stakeholders are not part of the teams, they are unaware of using (or even the
existence of) team rooms. We interpret this to mean that, while the stakeholders
are unaware of the teams’ use of team rooms, they notice an improvement in
product quality for those teams who use team rooms extensively.

The team room in software development
In this fourth part we address some emerging issues arising from the evolving
use of team rooms. To frame this part of the discussion, we repeat that a central
aspect of a team room’s value is that its use is so varied. For example, some
teams spend the greater part of most days in these rooms, while other teams
also meet in them regularly, but less frequently. Independent of frequency of use
is the question of how these rooms are used. For example when some teams use
a team room people flow in and out of these ongoing meetings, while other
teams have fixed attendance at the meetings. Some teams have structured
agendas when using team rooms, while others work in a more open format. For
some teams, using team rooms leads to more people communicating, while
other teams see a reduced amount of discussion. Several teams rarely, if ever,

ITP
10,1

58

use a team room. The interviews and observations suggest that teams using the
team rooms spend more time on task during meetings than do the teams which
rarely, or never, use the team rooms.

A team room seems to provide a mechanism for group co-ordination and
communication. The software tools and other technologies are mundane. It is
their collective use that serves as the enabler of these software development
teams. These teams, composed of functional specialists working together, can
work together more easily and more productively. We believe the success of the
team room lies in its ability to support the social interactions of developers. This
allows the developers to focus more easily, and more successfully, on producing
software.

The most common signs of the positive effects are higher levels of developer
satisfaction and improved product quality. McGrath (1990) and McGrath and
Hollingshead (1994) argue that a team operates at three levels: work production;
social maintenance; and ego support. While these are distinct levels for
analysis, they are highly interrelated in practice. Our findings suggest that
using team rooms supports the social maintenance of teams and that this is, in
turn, linked with the other two levels. The rooms’ use puts team members
together, which encourages informal conversation. The rooms’ layout makes it
easier to deal with social conflict, further encouraging interaction. This is
abetted by the simplicity (and low cost) of the team rooms’ construction. The
apparent direct effect on both developer satisfaction and improved product
quality by using team rooms may actually be the result of two aspects of their
use: first, as a way to enable the social/behavioral processes of working
together; and, second, as a way to improve the productive efforts of the team.
These are the unexpected effects of use, and new forms of working together
deserve additional attention.

Unexpected effects of team room use. One unexpected outcome has been the
increased reliance on the team rooms to serve as a mechanism to deal with intra-
group conflict. Intra-group conflict is endemic to work groups (see, Pondy, 1967;
Thomas, 1975) and to software development groups in particular (Robey, 1984;
Walz, Elam and Curtis, 1993). Intra-group conflict is neither bad nor good; its
presence means that disagreements about both the nature and the purpose of
information and decisions arise between team members as they interact. Since
intra-group conflict is present in software development teams, having the team
rooms makes it easier for the developers to deal with conflict. However, this is
not done by improving their conflict management skills or providing them with
feedback on their group process (Losada et al., 1990). Instead, the screen serves
as a buffer between people. Team members come to rely on indirect
interpersonal discussion. This may be what the software developers like about
using the team rooms. “We still have all that people stuff, it just goes easier in
[the team rooms],” said one junior developer. In this way, we see the team room
serving as a vehicle towards achieving what has been called “collective mind”
(Weick, 1995; Weick and Roberts, 1993). Collective mind focuses attention on the

Social processes
of software

development

59

“heedful” performance of contribution, representation and subordination
(Weick, 1995). The attention is focused on the group, not the person.

Another unexpected outcome has been the role of the videotape meeting
archives. At first these tapes were touted as a way to record the meeting
process. Tapes allowed for the capture of decision making. They could also
serve as a form of tutorial (where junior developers could see how senior
developers deal with specific issues) and as a record of work or a team memory
(so absent team members could “catch up” quickly). However, the tapes became
a symbol of corporate memory. That is, with no formal policy as to access and
no idea of how they could be used for rewards (or punishments), team room
users typically opted not to use the video camera and audio tape features
available. The existing tape archives became well-guarded repositories. Access
is limited to a very few and this access is only granted after all taped members
agree. Finally, the tapes are no longer stored centrally, but are kept by the
managers of the teams which were taped.

New forms of working together are appearing. The most explicit example of
this is the increasing use of the team room to support software development. A
second example is the appropriation of the team room for other types of work.
This includes uses like the team of lawyers from several sites collaborating on a
contract. Another appropriation is development managers using the team room
as a planning facility. An agenda was e-mailed to all meeting participants. The
agenda, and the comments, were then brought up at the meeting. All
participants knew what to expect and were prepared actively to discuss and
investigate each issue.

A third and more radical example is provided by the R&D group at the site.
They reconfigured their work space to reshape their entire environment to be
more “team room-like.” Known as the “team room 2”, this space replaces 14
small offices and a small conference room with a large open area. The major
difference from the flexible office so common these days is the proliferation of
large common screens around the room. The LAN supporting this environment
allows any developer to toggle his or her personal machine’s screen to a
common screen for sharing. The work space is busy, visually stimulating, and
still adapting to the users of team room 2. For instance, small spaces are placed
at the edges of the common area. These are available for private calls and “quiet
time.” The manager also maintains a private office for confidentiality and
meetings. Finally, a “normal” team room is part of the space.

Software development as discussion
While the software suite of the team room is identical to the software suite at
any individual’s workstation – including access to work products – use is
different. By sharing the computer, the same suite is used differently. And, save
for the scheduling software, team rooms have no unique software. The facility
provides a venue for teamworking, designed by developers to enhance support
of their software development needs.

ITP
10,1

60

Malone, Lai and Fry (1995) have argued that radically tailorable tools for
co-operative working allow “users to create a wide range of different
applications by progessively modifying a working system”, (p. 178). Their
context was asynchronous meetings and specific tool development. Broadening
this perspective to see a system as including the social structures puts the team
room in perspective as a radically tailorable tool. In this way, the team room
becomes a conduit, serving as a vehicle for the teams to work. The direct effect
is to make it easier for developers to work together; enabling the production
aspects. So, software development improvements at this site have emerged
without increased engineering. Rather, they have emerged due to increased
discussion.

This can be seen as adaptive from a structurational perspective (DeSanctis
and Poole, 1994). Structuration theory asserts that social and physical
structures influence each other over time (Giddens, 1984; Giddens and Turner,
1987; Orlikowski, 1992; 1993; Orlikowski and Robey, 1991). Social structures can
be norms, values, roles and ways of interacting. Physical structures include the
use of space, delineation of boundaries and the role of technologies/machines.
This interactive structuring is done by selective (and often unconscious)
decisions on what and how to use these structures. That is, since the social
structures are formed by, and themselves form, the physical structures of use, a
facility that provides a way to adapt easily to various uses would be popular.
Unlike highly structured computer-supported meeting rooms, the team room
imposes minimal constraints on the participants (e.g. Growohoski, et al., 1988).
McLeod and Liker (1992) also have argued that low-structured computer-
supported meeting rooms are more adaptable to the variations in how teams
choose to work.

This study suggests that when the developers at this site were faced with
production problems, they focused their efforts on making it easier to work
together. What arises from this reflective effort for self-improvement is a simple
facility, gathering a set of common technologies in a way that easily adapts to
the way the software teams work at this site. The team room is not a production
platform. It is a place to discuss. The team room’s design makes it easier to
work together. The team room provides a vehicle to support the social and
behavioral aspects of software development, and this is reflected in the
improvements to software production at this site. The homemade facility, the
infectious mode of use, and the anticipated and unexpected outcomes of use,
reflect the desire of the developers to do better work. This is the essence of the
story. Will the team room have the same effect at other sites? Currently, it is too
early to tell.

Team rooms now exist at several other sites. Our involvement with these
sites is limited and our evidence anecdotal. However, the use, and reactions to
use, at these sites seems to follow the team room’s trajectory at the original site.
Finally, in this work, we resisted the desire to quantify the contributions of each
element of the team room. Like eating water with a fork, understanding the
contribution of each piece of the team room will be difficult and may have little

Social processes
of software

development

61

reward. What we can say is that at this site the team room supports software
development. The facility supports the interaction of developers and makes it
easier for them to work together in producing software.

References
Boehm, B. (1981), Software Engineering Economics, Prentice-Hall, New York, NY.
Boehm, B. (1987), “Improving software productivity”, Computer,Vol. 2 No. 1, pp. 43-57.
Brown, S. (1995), “The fall of software’s aristocracy: realizing the potential of development”, in

Leebaert, D. (Ed.), The Future of Software, MIT Press, Cambridge, MA, pp. 157-75.
Carmel, E., George, J. and Nunamaker, J. (1992), “Supporting joint application design with

electronic meeting systems: a field study”, Proceedings of the 13th International Conference
on Information Systems, pp. 223-32.

Chroust, G. and Bergsman, J. (1994), “Workflow systems”, Proceedings of CON ’94, Workflow
Management: Challenges, Paradigms and Products, pp. 291-3.

Curtis, W. (1989), “Three problems overcome with behavioral models of the software development
process”, Proceedings of the 11th International Conference on Software Engineering,
pp. 398-9.

Davis, A. (1996), “It feels like deja vu all over again”, IEEE Software, Vol. 16 No. 4, p. 4.
DeMarco, T. (1995), Why Does Software Cost So Much? And Other Puzzles of The Information

Age, Dorsett House, New York, NY.
DeMarco, T. and Lister, T. (1988), Peopleware: Productive Teams and Projects, Dorsett House, New

York, NY.
DeSanctis, G. and Gallupe, B. (1987), “A foundation for the study of group decision support

systems”, Management Science, Vol. 33 No. 5, pp. 589-609.
DeSanctis, G. and Poole, M. (1994), “Capturing the complexity in advanced technology use:

adaptive structuration theory”, Organization Science, Vol. 5 No. 2, pp. 121-47.
Dillman, D. (1978), Mail and Telephone Surveys: the Total Design Method, John Wiley & Sons,

New York, NY.
Giddens, A. (1984), The Constitution of Society: Outline of the Theory of Structure, University of

California Press, Berkeley, CA.
Giddens, A. and Turner, J. (1987), Social Theory Today, Stanford University Press, Stanford, CA.
Growohoski, R., McGoff, C., Vogel, D., Martz, B., and Nunamaker, J. (1988), “Implementing

electronic meeting systems at IBM”, MIS Quarterly, Vol. 20 No. 4, pp. 420-30.
Henderson, J. and Lee, S. (1992), “Managing I/S design teams: a control theories perspective”,

Management Science, Vol. 31 No. 8, pp. 757-77.
Humphrey, W. (1988), Managing the Software Process, Addison-Wesley, Reading MA.
Humphrey, W. (1995), A Discipline for Software Engineering, Addison-Wesley, Reading MA.
James, L. (1982), “Aggregation bias in estimates of perceptual agreement”, Journal of Applied

Psychology, Vol. 67 No. 2, pp. 219-29.
Klein, K., Dansereau, F. and Hall, R. (1994), “Levels issues in theory development, data collection,

and analysis”, Academy of Management Review, Vol. 19 No. 2, pp. 195-229.
Lee, S., Goldstein, D. and Guinan, P. (1991), “Informant bias in I/S design team research”, in

Nissen, E., Klein, H. and Hirschheim, R. (Eds), Information Systems Research: Contemporary
Approaches and Emergent Traditions, North-Holland, Amsterdam, The Netherlands.

Liou, Y. and Chen, M. (1993-1994), “Using group support systems and joint application
development for requirements specification”, Journal of Management Information Systems,
Vol. 10 No. 3, pp. 25-41.

ITP
10,1

62

Losada, M., Sanchez, P. and Noble, E. (1990), “Collaborative technology and group process
feedback: their impact on interactive sequences in meetings”, CSCW ’90 Proceedings,
pp. 53-64.

Malone, T., Lai, K. and Fry, C. (1995), “Experiments with OVAL: a radically tailorable tool for
cooperative work”, ACM Transactions on Office Information Systems, Vol. 13 No. 2,
pp. 177-205.

McGrath, J. (1990), “Time matters in groups”, in Galeghar, J., Kraut, R. and Ergido, C. (Eds),
Intellectual Teamwork, Social and Technological Foundations of Cooperative Work, Lawrence
Erlbaum Associates, Hillsdale, NJ, pp. 1-23.

McGrath, J. and Hollingshead, A. (1994), Groups Interacting with Technology, Sage Publications,
San Fransisco, CA.

McLeod, P. (1992), “An assessment of the experimental literature on electronic support of group
work: results of a meta-analysis”, Human-Computer Interaction, Vol. 7 No. 4, pp. 257-80.

McLeod, P. and Liker, J. (1992), “Electronic meeting systems: evidence from a low structure
environment”, Information Systems Research,Vol. 3 No. 3, pp. 195-223.

Miles, M. and Huberman, A. (1994), Qualitative Data Analysis, Sage Publications, Thousand
Oaks, CA.

Miller, S. (1982), “Quality and quantity: another view of analytic induction as a research
technique”, Quality and Quantity, Vol. 16 No. 2, pp. 281-95.

Olson, J., Olson, G., Storrosten, M. and Carter, M. (1993), “Groupwork close up: a comparison of the
group process with and without a simple group editor”, ACM Transactions on Office
Information Systems, Vol. 11 No. 4, pp. 321-48.

Orlikowski, W. (1992), “The duality of technology: rethinking the concept of technology in
organizations”, Organization Science, Vol. 3 No. 3, pp. 398-427.

Orlikowski, W. (1993), “CASE tools as organizational change: investigating incremental and
radical changes in systems development”, MIS Quarterly, Vol. 18 No. 3, pp. 309-40.

Orlikowski, W. and Robey, D. (1991), “Information technology and the structuring of
organizations, Information Systems Research, Vol. 2 No. 2, pp. 143-69.

Pondy, L. (1967), “Organizational conflict: concepts and models”, Administrative Science
Quarterly, Vol. 12 No. 3, pp. 296-320.

Robey, D. (1984), “Conflict models for implementation research”, in Schultz, R. and Ginzberg, M,
(Eds), Applications of Management Science, JAI Press, Greenwich, CT.

Sachs, P. (1995), “Transforming work: collaboration, learning, and design”, Communications of
the ACM, Vol. 38 No. 9, pp. 36-46.

Seidler, J. (1974), “On using informants: a technique for collecting quantitative data and
controlling measurement error in organization analysis”, American Sociological Review,
Vol. 39 No. 12, pp. 816-31.

Suchman, L. (1983), “Office procedures as practical action: models of work and system design”,
ACM Transactions on Office Information Systems, Vol. 1 No. 4, pp. 320-8.

Suchman, L. (1995), “Making work visible’, Communications of the ACM, Vol. 38 No. 9, pp. 56-65.
Thomas, K. (1975), “Conflict and conflict management”, in Dunnette, M. (Ed.), Handbook of

Industrial Psychology, Rand-McNally, Chicago, IL.
Tyran, C., George, J. and Nunamaker, J. (1993), “Group support for technical review teams: an

exploratory investigation”, Proceedings of the 26th Hawaii International Conference on
Systems Science.

Walz, D., Elam. J. and Curtis, B. (1993), “The dual role of conflict in group software requirements
and design activities”, Communications of the ACM, Vol. 36 No. 10, pp. 63-76.

Weick, K. (1995), Sensemaking in Organizations, Sage Publications, Thousand Oaks, CA.
Weick, K. and Roberts, K. (1993), “Collective mind in organizations: heedful interrelating on flight

decks”, Administrative Science Quarterly, Vol. 38 No. 5, pp. 357-81.

