
COMMUNICATIONS OF THE ACM December 2004/Vol. 47, No. 12 95

SOFTWARE
DEVELOPMENT

TEAMS
Software development is an impressively complex

socio-technical activity. It requires people to

interact with each other and with both the

technical methods and computing technologies

they use to perform their work [3]. Analytically,

the social aspects of software development

include how people interact, behave, and organize.

Technical aspects of software development include

the use of production methods, development

techniques, and computing technologies. In

practice, it is difficult to disentangle the way

people do things from the methods, techniques,

and computing technologies they use [6].

By Steve Sawyer

Considering three software development team archetypes
and their implications.

96 December 2004/Vol. 47, No. 12 COMMUNICATIONS OF THE ACM

In this article, I focus on what we can learn about
software development by focusing on the ways soft-
ware developers organize. By taking this social per-
spective, I highlight how software production
methods, techniques, and tools are enmeshed in and
enacted through the structures and interactions of
the professionals who work together to build soft-
ware. A social perspective considers the team as the
unit of analysis, seeing it as more than the aggregate

of individual software developer’s attributes and
actions. A social perspective contrasts with production-
focused views of software development; social action
becomes the focal activity, not the by-product of a
method’s prescription.

More common perspectives on software develop-
ment, such as the Software Engineering Institute’s
(SEI) Capability Maturity Model (CMM), focus on
the means of production (methods, techniques, and/or
tools): a techno-social approach. The People-Capabil-
ity Maturity Model (P-CMM) complements this by
explaining how people can best change their behavior
to fit the CMM approach. Together, the CMM and P-
CMM reflect the traditional production first, people
second, approach. The fundamental question I pose
here is: What can we learn about software develop-
ment by privileging the social perspective?

To characterize this social perspective, I outline
three archetypes of software development. Archetype
here means an idealized form premised on an inter-
nally consistent set of assumptions. A software team
archetype represents the often implicit beliefs about

human behavior and work organization that struc-
ture the explicit activities of development. Here, I
review and build on these archetypes as a means of
providing guidance for practicing professionals rela-
tive to the organization of software development
tasks and the selection of methods and tools.

Three Social Structure Archetypes of
Software Development Teams

My premise is that there exist
three generic archetypes of soft-
ware development teams: sequen-
tial, group, and network (see
Table 1); the sidebar describes
the conceptual bases for these
archetypes. Table 2 outlines the
contrasts among these three
social archetypes of software
development, which are dis-
cussed in greater detail later.
These archetypes help us to pro-
vide guidance and to understand
the more practical issues of
hybrid models—the approaches
to software development that

combine elements of the three social archetypes (see
Table 3).

Sequential Archetype
The sequence archetype enacts the belief that a good
process leads to a good product. Software develop-
ment is seen as a linear, task-driven, structured effort
driven by a known and prespecified ordering of the
requisite tasks. The social structure is set within the
host organization’s administrative scheme, hierarchi-
cal, role-based, and formalized. The task and role
specialization help to reduce intra-functional discus-
sion which, when needed, is done via formal chan-
nels. People’s roles are task-specific, discrete,
specialized, and identifiable. A prespecified task
ordering further implies a prescriptive view of the
production process.

Table 1. Three
archetypes of the
social processes
of software
development.

Archetype Definition

Sequence

Group

Network

Software development is a production effort based on a linear set of discrete tasks. People work in
specialized functions with formalized interactions across functions. People are valued for their
particular specialized skills.

Software development is seen as a combination of development and production where a set of discrete
tasks may need to be repeated until the product is complete. Developers are organized into inter-
dependent groups and are valued for both their particular skills and for their ability to work with others.

Software development is seen as a process of constant development with a specific focus on the
outcome/product. Tasks are not seen as sequential, and tasks are tied to individuals (or small groups)
whose participation is based on interaction. Group members are valued for what they can produce. This
implies a complex network of ties between people and a hub-and-spoke management approach.

■ Conceptual Bases of the Three Archetypes

The sequential team archetype of software development team social structure draws on the work design
tradition in industrial engineering [3]. Work is seen as a set of discrete tasks that can be measured.

The group archetype draws its intellectual roots from theories of social psychology, such as “work
redesign” [2]. Work redesign arose in response to such issues as personnel motivation, retention, and pro-
ductivity that typically occur in a work design approach.

The network group archetype draws on concepts of social network theory [1, 4]. In this archetype a group
of people is linked by the relative “strength” of the social ties among them. Work is seen as the use of these
links to deliver and receive information; these uses both span and define tasks. c

The social interactions in the sequence archetype
of software development are based on concepts of
control. That is, people’s interactions are seen pri-
marily as driven by the work they do. If this work

can be measured and differ-
ences in performance ana-
lyzed, the roles can be
transferred through train-
ing. This task/specializa-

tion orientation also suggests it is possible for one
member to be replaced as needed by another person
if they have the same functional level of skill.

The work emphasis is on embedding the required
information in the work product and/or associated

documents to pass on to
each follow-on task. This
means that if required inter-

team and extra-team interactions can be defined and
formalized they may be automated (a capital/labor
substitution). The control orientation, formalized
interactions among team members, and automation
emphasis suggest there is little need for strong social
bonds. Examples of the sequence archetype include
the traditional waterfall model (such as the systems
development life cycle, or SDLC), the CMM, and
the SPICE approach.

Group Archetype
Group archetypes also focus on process-to-product
orientation. In this archetype, software development
is based on a set of predefined tasks that build on the
collective skills and weaknesses of the group’s mem-

bers. Social structures in the group archetype are
based on collaboration. The tasks are sequential but
iterative, and there is explicit attention to process
improvement by the members of the group. The

group archetype also explicitly
recognizes, in its iterative nature,
that software development and
production are often intimately
linked. Thus, a group archetype
is normative. Further, a group
archetype implies the boundary
between the team and the social
context is permeable and that
formal and informal boundary-
spanning (for example, to key

stakeholders) is important.
The group archetype makes explicit the need for

social interaction. The group’s rules and behaviors
are designed to help resolve the inevitable conflicts
that arise when people collaborate. There is the
potential for some automation of production tasks,
particularly for tools and methods that explicitly
support and/or enable collaboration among the
group members. Examples of group archetypes are
the spiral/evolutionary approach to software devel-

opment, rapid application development (RAD),
and joint application development (JAD).

Network Archetype
The product is the central focus in the network
archetype; production processes are secondary.
The development effort takes shape through the
network ties developed by the participants. The
strength of these ties reflects the frequency and
value derived from interaction. Further, this net-
work is fully embedded in a larger social context

that may not easily map to any organizational or
geographic boundary. In the network archetype, the
people’s connections and the tasks they perform
define the process. However, these constraints are a
function of the social ties that create the social net-
work. So, even if a process focus is not central, there
is some form of version control of testing and of doc-
umentation. One belief underlying the network
archetype is that a good product comes from having
good people. This people-first approach recognizes
that it is difficult (if not impossible) to replace key
members of a network because they represent impor-
tant hubs. These key people serve as the nodes that
define the network.

To support the network, software development
tools must provide for interconnection. Simply
stated, any software development tool is valued for
how it helps the individual member and/or for how

COMMUNICATIONS OF THE ACM December 2004/Vol. 47, No. 12 97

Archetype
Aspect

Sequence

Perspective

Belief mode

Orientation

View of task

Implied method

Tie to context

People’s actions

Examples

Process first

Control

Prescriptive

Production

Linear and sequential

Prescribed boundary

Prescribed

SDLC, SEI/CMM

Group

Process first

Conflict

Normative

Production and Development

Iterative and sequential

Permeable boundary

Role and goal driven

Spiral, RAD, JAD

Network

Product first

Interaction

Descriptive

Development

Emergent and nonlinear

Embedded

Individual and linked

Open source, Chief programmer

Table 2. Aspects of the three
archetypes of software devel-
opment team structure.

Table 3. Insights and
opportunities.

Insight
Archetype

Sequence

Team/Task Issues

Opportunities

Method Issues

Opportunities

Tool Issues

Opportunities

Cohesion

Cross-training,
Process management

Repeatability

Components
Feedback mechanisms

Comprehension

Automation
Process control

Group

Consensus

Teamwork skills
Conflict management

Regulation

Connections
Iteration controls

Collaboration

Shared tools
Process support

Network

Contribution

Evaluation
Project management

Reliability

Tasking
Interdependencies

Connection

Interoperability
Interaction support

well it enables sharing among the network. A second
implication is that a network archetype, being emer-
gent, reflects a product development (as opposed to
production process) view of software. Further, given
the centrality of the social structures and individual
members interaction in a network archetype, the
effort is often contentious [11]. From this perspec-
tive, the interactions between the members are
focused on product features, functions, or actions.
There are few procedural details and the general
expectation among the members is “show and tell.”
That is, the resolution of disagreements is often
rooted in providing code that delivers on the con-
cepts discussed.

The chief programmer team model of software
development [1] is one example. The network struc-
ture is hub-and-spoke: strong ties between members
and the chief programmer and
weak ties between individual
team members. The recent
growth of open source software
development efforts [7] reflects a
second form of the networked
group archetype. This network
has multiple nodes (of varying
importance) and multiple ties
among many members of the
network.

Guidance for Practicing
Professionals
The value of this archetypal
frame is measured by the insights and guidance it
provides to both scholars and practicing profession-
als. Here, I focus on the latter, and highlight issues
with team/task arrangements, methods, and tools
(see Table 3).

Sequence Guidance. Given the degree of task
specialization and decoupling, it is often difficult for
participants to see the value of their individual con-
tribution to the whole. Limited interaction with
other members often reduces the likelihood that
project team cohesion will develop. Symptoms of
this lack of cohesion are analysts not speaking with
developers and testers remaining independent of the
rest of the team. This suggests that cross-training
personnel (for multiple roles) and more interaction
through formal channels (such as cross-functional
meetings and product walkthroughs) are important
to developing stronger sequence teams. The
sequence archetype is predicated on repeatable
methods and a principle means of doing this is to
break the project into many components. This puts
pressure on maintaining standards and generating

feedback, suggesting it is important to ascertain
between-task adherence to standards. Mechanisms
to do this include walkthroughs, checklists, and
sign-offs. Walkthroughs can serve two purposes: to
improve the team’s clarity of purpose and a means
for cross-assigning members of one task to be part of
another. Since the sequence archetype is premised on
routinization, automation is often a goal. This sug-
gests that tool development should focus on embed-
ding process control into an integrated development
environment to reinforce method adherence.

Group Guidance. The group archetype focuses
on team-member interaction and developing con-
sensus among team members. Combined with the
cyclic and integrated nature of production, this sug-
gests that the task/team issue is to improve a mem-
ber’s team-working skills. Further, regulating the

iterative nature of the project is
important. That is, how do
teams know when to stop iterat-
ing? One clear form of iteration
control is money (or some other
resource constraint), though
others may be more valued such
as user feedback or functional
compliance assessments. Guid-
ance for method development in
the group archetype includes
increasing cross-iteration task
linkages such as change and ver-
sion tracking, release control,
and release planning. Group-

based approaches demand tools that support team-
member collaboration, which suggests developing
shared tools that allow for group access. The prolif-
eration of Lotus Notes databases to support software
development teams exemplifies this attention.

Network Guidance. Given the interdependent
nature of the work combined with the individual-
ized nature of the way the work is done, evaluating
contributions is often outcome or deliverable-based.
Such an approach demands strong product manage-
ment. Often this product management seems cen-
tralized in one person or a small number of people
who act as hubs. Thus, using the network archetype,
dispersing work seems to concentrate management.
Control of the product is with a person (hub). And,
while this control may shift over time, it is rarely
shared. However, members of a network can often
choose to leave the effort if their contributions are
not being rewarded.

In the network archetype one method issue is
repeatability: the effort to ensure a common process
for repetitive activities (such as task assignment,

98 December 2004/Vol. 47, No. 12 COMMUNICATIONS OF THE ACM

The empirical and
philosophical question of
which archetype or what

hybrid blend is best is likely
to have many viable

responses.

progress reporting, and issue tracking) is often prob-
lematic. While these are issues with all forms of soft-
ware development, they are particularly central to
the network archetype (and its reliance on social
interaction as the dominant form of structure). One
method opportunity for network archetypes is auto-
mated tasking mechanisms—in essence, a public
project tracking board. Such a public tracking mech-
anism would also help to maintain and track the
interdependencies among the members of the net-
work. Another issue is the move to outcome mea-
sures such as “does your module run and does it
interact with the larger product?” Outcome-oriented
approaches are common aspects of the Microsoft
models of development [5, 10]. The interdependent
nature of work in a network archetype means the
tools to support this approach must provide for
interoperability and interaction. That is, from a net-
work perspective, it must be easy (if not seamless) to
share files and even to pass useful utilities and tools.
This helps to explain why stable platforms (such as
Unix/Linux) are the base for many open source
development efforts [7].

Hybrid Models
A more typical scenario is that practicing software
development teams will adopt a hybrid social struc-
ture, drawing elements from several archetypes. For
example, both Baker [1] and Brooks [3] write about
their IBM System/360 operating systems develop-
ment effort. The sequential archetype advocated by
Brooks provides a stylized view of development
while Baker’s view provides insight into how the
chief programmer can create a hybrid social struc-
ture underlying the sequence of the SDLC. As a sec-
ond example, Microsoft’s development approach is a
hybrid between a group and network archetype [4,
5, 10]. Guinan et al. [4] and Vessey and Sravanapudi
[9] highlight how CASE tools are often designed to
support sequence models but in their use they sup-
port group interactions.

The guidance to take from these examples of
hybrid approaches to software development comes
in three parts. First, it suggests the importance of
aligning a software development team’s tasks, pro-
duction methods, and computing technologies. Sec-
ond, it appears from this limited but illustrative
sample of empirical work that focusing on alignment
among tasks, methods, and technologies is likely to
lead to increased attention to social and behavioral
aspects of software development. Third, the impor-
tance of the social network that develops among
developers suggests the need to develop network-
sensitive methods and tools, and an equally focused

effort to reduce the reliance on sequence-focused
methods and tools.

Privileging the Social Perspective
The empirical and philosophical question of which
archetype or what hybrid blend is best is likely to
have many viable responses, demands more atten-
tion, and is certainly beyond the limited space of this
article. I have provided evidence that a range of
hybrid approaches exist and that these can be
decomposed into some combination of the three
base social structure archetypes. Further, I have
demonstrated that focusing on the social structures
of software development suggests that inattention to
the social processes and structures often leads to mis-
matched selections of method and computing tech-
nologies. As I noted, for example, the social
perspective makes clear the valued roles of a devel-
oper’s social networks, something a production
process focus often neglects. Moreover, the iterative
nature and complexity of social interaction implied
in hybrid models also suggest that software develop-
ment tools and methods that enable collaboration
and support production would be highly valued.

References
1. Baker, F. Chief programmer team management of production pro-

gramming. IBM Systems Journal 11, 1 (Jan. 1972), 56–73.
2. Bijker, W. Of Bicycles, Bakelites and Bulbs: Toward a Theory of Socio-

technical Change. MIT Press, Cambridge, MA, 1995.
3. Brooks, F. The mythical man-month. Datamation (1974), 44–52.
4. Carmel, E. and Sawyer, S. Packaged software development teams: What

makes them different? Information Technology and People 11, 1 (Jan.
1998), 7–19.

5. Cusumano, M. and Selby, R. How Microsoft builds software. Com-
mun. ACM 40, 6 (June 1997), 53–61.

6. Guinan, P., Cooprider, J., and Sawyer, S. The effective use of auto-
mated application development tools. IBM Systems Journal 36, 1 (Jan.
1997), 124–139.

7. Madey, G., Freeh, V., and Tynan, R. The open source software devel-
opment phenomena: An analysis based on social network theory. In
Proceedings of the 8th Americas Conference on Information Systems, 2002,
1806–1812.

8. Sawyer, S., Farber, J., and Spillers, R. Supporting the social processes of
software development teams. Information Technology and People 10, 1
(Jan. 1997), 46–62.

9. Vessey, I. and Sravanapudi, P. CASE tools as collaborative support
technologies. Commun. ACM 38, 1 (Jan. 1995), 83–95.

10. Zachary, G. Showstopper: The Breakneck Race to Create Windows-NT
and the Next Generation at Microsoft. The Free Press, New York, 1994.

Steve Sawyer (sawyer@ist.psu.edu) is a founding member and
an associate professor at Pennsylvania State University’s School of
Information Sciences and Technology in University Park, PA.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 2004 ACM 0001-0782/04/1200 $5.00

c

COMMUNICATIONS OF THE ACM December 2004/Vol. 47, No. 12 99

